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ABSTRACT

This research considers a cantilever beam which can move

axially in and out of a rigid frictionless hole and is free to

vibrate laterally outside the hole. Two Euler equations

describing the lateral and axial motion of the beam are

presented. A transformation of coordinates to eliminate the

moving boundary, and spatial non dimensionalization are used

to transform the problem into a system of two coupled non

linear partial differential equations with a fixed domain. A

finite element formulation provides a numerical solution to

the problem. Results for some problems are presented.
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I. INTRODUCTION

A literature search of the engineering journals shows that

an investigation of the transient behavior of a cantilever

beam, free to move axially in a frictionless hole at its

'fixed' end, has not been undertaken to this date. In 1979,

Boresi and Salinas prepared a report for the Naval Sea Systems

Command, that formulates the problem and proposes a solution

procedure. The report was the result of an interest in the

transient behavior of a gun barrel during recoil following

firing. [Ref.1]

Hamilton's principle was used to generate the governing

partial differential equations for axial and lateral motion of

the beam [Ref.1]. As a result of axial motion of the beam,

the length of the beam changes with time. Thus the 'free' end

of the cantilever beam is a moving boundary point. If the

beam is subjected to an axial force, then the beam length,

that is the location of the 'free' end, is an unknown which is

itself a solution of the problem. This is a 'conjugate'

problem, wherein the boundary condition is a solution of a

problem which can not be solved until the boundary extent is

known. The analogy is of a dog chasing its own tail, or the

'catch 22' syndrome. The dilemma is resolved by introducing

a coordinate transformation which produces a classical two-

point (fixed) boundary domain. The removal of the moving

1



boundary is not without expense, as the resulting governing

partial differential equations are significantly more

complicated. Thus the complication of the boundary condition

has been 'transferred' into the interior domain of the

problem. The two equations governing axial and lateral

motion, for beam length and lateral motion, are both coupled

and nonlinear if the axial motion is not prescribed.

Using the finite element method over the spatial domain,

the two partial differential equations in space and time, are

reduced to a system of ordinary differential equations in time

only. That is, the original initial-(two-point) boundary

value problem is transformed into a system of initial-value

problems for the transient behavior at discrete points of the

system. These nonlinear O.D.E.'s are linearized using the

quasi-linearization technique of Bellman [Ref.2], and then

solved by using a fifth order Gear' method for stiff equations

This investigation adds further to the formulation of the

problem by Lhe introduction of non dimensional variables.

Additionally, the work also provides mathematical development

and details required for the numerical solution of the

problem. Restrictions and a generalization of the problem are

also discussed.

The scope of the problem suggests a cautious two-stage

investigation. In the first stage, the axial motion as a

function of time is prescribed. The result is the elimination

of the need to solve the equation for axial motion. However,

2



the equation can be used to solve for the axial force

directly. Moreover, the remaining governing equation for

lateral transient behavior is linear since the 'length' term

in the equation is known. It is felt that the first stage

investigation, which is the body of this thesis activity,

would provide useful insight into the nature of the problem

prior to undertaking the second stage investigation. In the

second stage investigation, instead of prescribing the axial

motion, the axial force at the sliding end is prescribed. As

a result, the equation for the transient axial response needs

to be solved in conjunction with the equation for transient

lateral response, since now the length of the beam is also

unknown. The second stage problem is formulated but not

solved here.

3



II. PROBLEM FORMULATION

Consider the transient behavior of a cantilever beam

fitted snugly into a frictionless hole as shown in Figure

(2.1). The beam is free to move axially and laterally when an

axial force F(t) is applied, or when otherwise an axial

displacement is imposed. The beam's motion can be -f ned

completely by its axial motion u(t) as a function of time, and

its lateral motion O(x,t) as a function of both time and

position along the x axis. Because of inertia, under certain

conditions, such as when the axial force F(t) is a large

magnitude impulse, the axial movement of the beam may tend to

bend the beam by beam-column action or compress the beam

axially by beam-bar action. These axial deformation effects

are not considered here, that is u' = 0. Therefore, it is

assumed that all points along the x-axis of the beam

experience the same axial motion. Thus, the instantaneous

length of the beam, L(t), serves to describe the axial motion

of all points of the beam.

As the beam moves axially, the length of the beam outside

the hole at any time t is defined as L(t). Because L(t) is

changing with time the extent of the domain of the problem

changes with time. It is this changing domain that results in

the coupling of the equations which describe the lateral and

4



axial motion of the beam. The changing domain is the essence

of the problem and will be discussed at length in the

development that follows. This investigation will be

restricted to long slender beams, which in this case will be

beams for which the length is equal to or greater than ten

times either of the cross-sectional dimensions. With this

restriction imposed, the Timoshenko Beam shear effects and

rotary inertia, are neglected [Ref. 3]. However, as the beam

length becomes shorter these effects become larger and loss of

accuracy in the solution is expected.

y
L(t)

V
F (t) . . ...... ... ... .. x

Figure 2.1 Cantilever Beam Moving
Axially in a Frictionless Hole
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A. THE EULER EQUATION OF LATERAL MOTION

Imposing equilibrium in the lateral direction and using

small displacement theory results in the Euler Equation for

the lateral motion of a beam,

Ex V. (x,t) + p Vtt(X,t) = p(X,t)

t > 0 (1)

0 < x < L(t)

where the subscripts t and x denote partial differentiation

with respect to time and position, respectively and;

1(x,t) = the lateral displacement as a function of x and

t.

E = Young's modulus of elasticity of the beam.

I = moment of inertia of the beam cross-section.

p = the mass of the beam per unit length (constant).

P = the internally applied load per unit length.

The fourth order Euler Equation has two essential (forced)

boundary conditions on displacement and slope at the 'fixed'

left end,

v(0,t)= 0
(2)

v,(0,t)= 0

6



and two natural boundary conditions on moment and shear force

at the 'free' right end,

EI V. (L, t) =M

(3)
EX V.,.,(L, t )  =P

where M and P are the applied moment and load, respectively.

The homogeneous boundary conditions (M = P = 0) are the

boundary conditions considered here. However, a verification

of the solution method is presented where the non homogeneous

boundary conditions are imposed. The term 'fixed' end is used

in reference to the boundary located at the left end of the

beam's domain (See Figure 2.2), i.e., at x=0. As a result of

the axial motion, the point on the beam at this left or

'fixed' end is changing with time.

The natural boundary conditions at the free end (Eqs. 3),

for moment and shear, occurs at the right end point of the

beam (i.e., at x = L) for all time t. It is the fact that the

argument L in Equations (3) is changing with time that makes

the natural boundary conditions troublesome. These so called

moving boundary conditions (or changing domain) will be

discussed later at length.

The Euler Equation for lateral motion is also a second

order differential equation in time. To obtain a solution,

two initial conditions, one on its lateral position ^O(x,0),

and one on its velocity 1,(x,0), along the x axis will be

7



needed. These initial conditions will depend on the specific

problem being solved.

B. THE EULER EQUATION OF AXIAL MOTION

If F(t) rather than L(t) is prescribed, then a

differential equation defining L(t) is needed. Again, using

principles of equilibrium for motion in the axial direction,

the following Euler equation for axial behavior is obtained,

t' t) + 1 [ I 2 1 _ _
(t) + El_ V[r v(L,t) - p V (L,t) ]= 1 F(t) (4)

LpL 0

Equation (4) is subject to the initial conditions,

L(0) = L0
(5)

L(O) = Lo

where L0 is the initial length of the beam at time t = 0. The

dot and double dot above L denote the first and second

derivatives with respect to time respectively, that is the

velocity and acceleration of axial motion.

Together Equations (1) and (4) along with their respective

boundary and initial conditions form a coupled and nonlinear,

initial-boundary value problem. When the force F(t) is known,

these coupled nonlinear equations can be solved using the

finite element method with a linearization scheme to find

8



v(x,t) and L(t). When L(t) is specified, Equation (4) yields

F(t) directly.

C. THE MOVING BOUNDARY

In the boundary conditions described in Equations (3), the

beam length L(t) is a function of time. Thus the boundary

conditions are conditions on a boundary which is moving.

Graphically this is shown in Figure (2.2). The curved

boundary of the region of integration presents a problem. The

desire is to remove the argument of time varying length from

the boundary condition at the free end. In essence, we desire

to secure the boundary. Graphically the boundary becomes a

straight line where previously it was a curved line (See

Figure 2.3). This can be achieved by using a coordinate

transformation as shown in the next section.

t V= F,(x) X L(t)

v=V X0 vX. t: oXX

x
V= Fo(X)

Figure 2.2 Region of Integration for Equation (1)
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t

v, V=.()

Figure 2.3 Region of Integration for Equation (25)

D. THE COORDINATE TRANSFORMATION

New variables 4(x,t) and 11(t) are introduced as follows:

__ x
L(t) (6)

11=t

It should be noted that 4 is a non-dimensional variable with

respect to the spatial domain. The lateral deflection now

becomes a function of these variables as shown below.

V x ( ,1) , t ( , )) ,or

V (X, t) ,(X, W

10



Considering the relations defined in Equations (6), the

following partial derivatives are obtained.

D4 -1
ax L

3% -xL -%£Lr
i =4i I where aL

t r7 L at

(8)

ax

1. Transformation of the Spatial Fourth Derivative of u

Considering Equation (7), the transformation of the

spatial fourth derivative on lateral displacement, V.u to the

new coordinate is accomplished through a series of

differentiations using the chain rule. The first

differentiation results in,

ax a x la (9)

Following the substitution of Equations (8) into Equation (9),

Equation (12) is obtained.

= lv (10)

11



After another differentiation with the chain rule the second

spacial derivative is found.

~~~2y-V ) = + I±!. 21

Again, using Equations (8), the second derivative is equal to,

_1

V. = - 1 v (12)

Likewise, the third derivative is,

1V (13)

and finally the fourth derivative is,

1
V -' , = - k (14)

2. Transformation of the Time Second Derivative of v

The transformation of the time second derivative on

lateral deflection (or acceleration), Ott to the new

coordinates 4 and I is performed in a similar fashion as was

the transformation of it spacial derivatives. Once again,

12



using Equation (7) and the chain rule, the following

expression for the first time derivative is obtained.

v = av = v a + av a)
V t a at a t (15)

Substituting the Equation (8) values of the partial

derivatives into Equation (15) results in the following

expression for ut,

-Vt v + v (16)Vt = -LV+V

Another time derivative using the chain rule results in the

following equation for Dtt ,

Again, using Equations (8),

Again, and, -uto1 (18)

at L at

13



along with the product rule of differentiation, we obtain

(19)V et _l - ,.av , + v+i

Recalling that the coordinate transformation on time stated

that t=q, it follows that,

L (t) = t DL _ aL
--- -~-. (20)

Now, using the quotient rule of differentiation, Equation (19)

becomes,

vt = v - % k + v+

(21)

k L-L, T VI l

Finally, after multiplying and collecting like terms, ott

becomes,

= 2 V44 + 2t2 vk - Lfv1 + V (22)

14



E. THE FINAL EULER EQUATIONS

Using the transformed operators, the Euler Equations are

rewritten in terms of the new coordinates, and 11.

1. The Transformed Euler Equation for Lateral Deflection

Substituting the transformed operators from Equations

(14) and (22), into the original Euler Equation for lateral

deflection,

EIV P v = p(x, t) (1)

results in the following Euler Equation transformed to the

and 71 coordinates,

El V + P [ ~ 2 4 - V - V + V

15



Multiplying through by the inverse of the coefficient of ok

gives,

,+ [2 (Jv' + 24 jV4 - -v, f v + V

EI P (') (25)

0(< 11)

and its boundary conditions,

v (0,TI) -- 0 v (l,Tj) =0
(26)

vA(0,1) = 0 v4 (l,T) = 0

The boundary conditions are now functions of 4 over the domain

0 < 4 < 1 , in lieu of x over the domain 0 < x < L(t). The

initial conditions on deflection and velocity will be

functions of 4 as well.

2. The Transformed Euler Equation for Axial Motion

The coordinate transformation on the Euler Equation of

axial motion shown again here,

L(t) + 2pL [EIV, (L,t) - pV(L,t)J = -I F(t) (4)

16



results in the transformed equation,

(28
L P-L (v~1~ E- + v1lT) J (28)

F(1 1 )PLO

subjected to the initial conditions in Equations (5).

3. Non dimensionalization of the Lateral Deflection, v

The purpose of the coordinate transformation just

completed was to deal with the difficulty presented by the

moving boundary condition at the free end of the beam. The

four boundary conditions of Equations (2) and (3) were also

transformed to the k and n coordinates as shown in Equations

(26). One of the great difficulties encountered in this

investigation resulted from the coordinate transformation

performed on the boundary conditions. After the introduction

of the non dimensional variable 4, the finite element method

(FEM) of Chapter III was pursued. This included an attempt to

confirm the FEM program on a couple of statics problems with

known solutions. The resulting FEM solutions were L3 larger

for displacements and L2 larger for slopes. We had simply

imposed the load (or moment) as one would have if the problem

had the dimensional independent variable x, when in fact x had

been replaced by the non dimensional variable t = x/L. This

17



problem was eventually resolved by introducing the non

dimensional displacement, V*, defined as,

V. = V (29)L

Its derivatives,

av 1

av L

aV L(30)
Dv"

are used such that,

V av o (Lv) LV

- a ((v) ; LVZ (31)

and in the same fashion,

v = LVk (32)

and,

V = LVk (33)

18



After making the substitutions into the equations of

lateral and axial motion, Equations (25) and (28)

respectively, the spatially non dimensional Euler equations

are obtained.

a. Final Euler Equation of Lateral Motion

2 ~ . v;, + 2~,. v; - -kv, 4f j L v~n

P (') (34)

0<1

where,

SPL ,and
El

(35)
=* L 3

Ex

and its boundary conditions are,

v'(0,7) 0 v(l,) 0
(36)

v;(0,T ) = 0 v (1,1) T 0

Again, discussion of the initial conditions will be

delayed until later.

19



b. Final Euler Equation of Axial Motion

2PL , 11i ) -p [-i vj (1, 1) +  L.v ( ,n ]

1
PLF(1) (37)

0< < 1

0<11

and initial conditions,

L(0) = L 0
(38)

f(0) = io

F. CASES

There are two general cases for which the transient

behavior of the cantilever beam may be considered. Recall

that the beam is free to move axially when an axial force F(t)

is applied resulting in an axial displacement, or when an

axial displacement L(t) is otherwise imposed. It was shown in

the Euler equation of axial motion (Eq. 37) that the axial

motion described by L(t) depends on F(t). However, if this

axial motion is specified simply as some function of time

alone then the problem is greatly simplified.

20



1. Case One, L(t) Prescribed

If L(t) is known then the problem is reduced to

finding a solution to the Euler equation of lateral motion

(Eq. 34) subject to its boundary and initial conditions. The

problem is a linear, initial-boundary value problem.

An even further simplification occurs if the axial

motion is so slow that the time derivatives of L(t) are

negligible. Certain linear functions of L(t) can conveniently

provide such a condition where the rate (or velocity) is made

small, and the second time derivative (acceleration) is always

zero. In this case Equation (34) reduces to,

+ V = 0 ,J9)EI

subject to its boundary and initial conditions and where

p* (4,T7) = 0 for a beam with no internal loading. Note that L4

is not a constant here, since L(t) is a prescribed function of

time which needs to be known.

In either of the cases (Eqs. (35) or (39)), a closed

form solution to the equation(s) is not possible. The finite

element mnethod (FEM), to be presented in Chapter III, was used

to obtain approximate solutions for both of these cases.

2. Case Two, F(t) Prescribed

In the case where F(t) is prescribed, both Equations

(34) and (37), subject to their respective boundary and
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initial conditions must be solved. We recall, that together

these two equations form a coupled, initial-boundary value

problem. Moreover, they are both now nonlinear, as they

contain terms with both dependent variables, L and b and their

derivatives. Therefore, it is necessary to linearize both

equations.

Any number of different strategies are possible for

the llnearization of these equations. The strategy used here

will be to treat each dependent variable as a 'primary' or

'secondary' variable in accordance with the following scheme.

The assignment of 'primary' or 'secondary' btatus will differ

depending upon which equation is to be linearized. In the

linearization of the equation of lateral motion, the 'primary'

variables are lateral deflection, v and its derivatives; and

the 'secondary' variables are axial motion, L and its

derivatives. As 'secondary' variables in the equation for

lateral motion, L and its derivatives are evaluated at the

previous time. On the other hand, for the equation of axial

motion, L and its derivatives are considered the 'primary'

variables and i and its derivatives are the 'secondary'

variables. In this case b and its derivatives are evaluated

at the previous time step.

The linearization of Equation (34) is quite simple

because in the nonlinear product terms, the primary variables

(b and its derivatives) appear linearly. Therefore, it only

becomes necessary to evaluate the secondary variables in these
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product terms at the -revious time. For completeness the

linearized equation is shown below,

2 ( 2V 24 + f - 2 v jv, - 4f v j + L. V ,n

0< < 1

0< 1
(40)

where the * subscript on a variable (or term) denotes that

the variable (or term) is evaluated at the previous time and

therefore is not an unknown in the equation.

The linearization of Equation (37) is not so simple

because the primary variables (L and its derivatives) do not

appear linearly in the nonlinear product terms.

If Equation (37) is expanded,

•2
f p+ L 4 [(1 tt) 1 [L2oVZ 2 (1, q)] + 4 [.L VZ2 (1,q) v4(1, 11)

-- P-10 [(41)

each of the bracketed [ ] terms are nonlinear. These terms

can be linearized in a number of different ways. Since this

is primarily an "L" equation, the "L" operators will be
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linearized usinq the quasilinearization technique or Bellman

& Kalaba [Ref.2]. The nonlinear terms then become,

2/Vik v (1 ,11) .2 3 - 2

where, v(l,71) v.(,) + - 0.1,)
21. (42)

2. L [e.(1,11)] 2  + L

3. L ., V j(1, T1) V; (1,T71 ) = 0 (1, 11) V. (1,I) IT.L

4. L 2 V; 2(l,11) = .(I,71) (-L.2 + 2L. L)

where 1. is the length of a finite element after the beam is

discretized, 0 represents slope vt. Recalling that 1=t, in

these equations, the subscript 11 denotes partial

differentiation with respect to time. Again, the * subscript

on a variable (or term) denotes that the value of the variable

(or term) from the previous integration is used.
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Equation (37) can be rewritten in terms of the L operators

and the following groups of terms,

C Z . 3 V.(I,.) + 4 .11,11)

= pL0 L.2

C3  = L.-22 (o ,rI i--
~T;.

C 2 0(1,) /.
2L0 (43)

C'= 1 92(1,T) L
210

S6 21, 1) L

1
2p0

Using Equations (43), Equation (37) becomes,

f + C, + C2L + C 3 + C4 L. + C5 L + C6 + C7 L CeYF(1) (44)

Equation (40), its boundary and initial conditions,

and Equation (44) with its initial conditions, now form a

coupled, linear initial-boundary value problem. A closed form

solution of these equations is not possible. The finite

element method (FEM), to be presented in Chapter III, could be

used to obtain approximate solutions to these equations.
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III. SOLUTION METHOD

A. FINITE ELEMENT METHOD DEVELOPMENT

Considering the L(t) specified case first, the task is to

solve Equation (34) together with its boundary conditions

given by Equation (36), and its initial conditions as

determined by the problem being investigated. Definition of

the initial conditions will require further discussion which

will be conducted later in this development.

Equation (34) is a linear partial differential equation in

one unknown, v*(4,t) when L(t) is specified. Recalling that

= t, here t will replace 71. An approximate numerical

solution of this equation together with its initial and

boundary conditions can be obtained by a Galerkin finite

element formulation.

1. Const-uction of the Beam Elammnt

The fourth order system of Equation (34) requires C'

continuity (continuity of function and slope). In order to

obtain C' continuity, an element with deflection v*, and slope

0", (0° will represent (* in the development that follows) as

degrees of freedom (DOF) at each end point is required. This

means each element must have a minimum of four DOF, which

requires a cubic polynomial. These interpolation polynomials
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are the set of cubic spline shape functions listed below and

detailed in Appendix A.

q 3a 2 2 23

q2 a 2 CC2 + 1 (X31. 1.

(45)

q 32 - 2 W

1.2 1.

q 1x2 1 a3

Figure (A.1) shows that shape functions q, and q3, are

associated with the displacement DOF (V; ,V where subscripts

1 and 2 represent node points 1 and 2) at the element end

points; and the even numbered shape function q2 and q4, are

associated with the slope DOF (Oj , 8;) at the same locations.

2. Global FEM Formulation

In terms of global shape functions Q,, the FEM

approximation v" to " is given by,

V" "Q, 8 (46)
I

where N is the number of elements, N = 2N + 2 is the number of
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global DOF, and 8. are the global degrees of freedom. The

global degrees of freedom, 8± are defined as follows,

T 51 " 68 . " 1 > (47)

where subscripts 1,2,3, ... (N-i) are DOF identifiers. In terms

of displacements and slopes, we have,

T =( V Vi 01 v 2 0 2 . V3 03 . V, O,-1 >* (48)

where the subscripts 1,2,3,... (N+l) refer to the Global Nodal

Points (GNP) and, < >* indicates the non dimensional forms of

V and 0, that is V* and 0.

The relationship between the global degrees of freedom

8. and, V* and 6' ; is such that for odd i (1,3,5,...N-1);

= " at GNP [(i+l)/2]. (i.e., 8 = V"(GNP 1), 83 = V"(GNP

2), ... ) For even i (2,4,6,...N); 8i = at GNP [i/2].

(i.e., 62 = &(GNP 1), 84 = 4'(GNP 2), ... )

Each ith GNP has two global shape functions, and hence

two DOF. An odd numbered shape function Qj, gives

displacement " at GNP{ (i+l)/2} = V;(-1.)/ 2 ) = 5., and an even
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numbered shape function Qj, gives slope " at

GNP(i/2} = =

3. Galerkin FEM Formulation

In accordance with the Galerkin Finite Element Method

(FEM), we form the approximate solution of V,

v'(kt) =-9*(4,t) = 07(4) smt (49)

Using the above approximation, the residual function for the

Euler equation of lateral motion (Eq. 34) is,

R(4,t) ={' -p" (50)

or,

R(4,t) = (i') + (51)

pr 12
.. 2. ( ) + 2..k. (4') - 24L(') - {L(') + L" p"

L
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After the final substitution, the residual is,

R( ,t) =(o (QT)4 +

p[22 944+24 t 2 (07) 2 4- 2~(QT) (g- + L QT]

- p

(52)

The Galerkin finite element equation is obtained by requiring

that the residual function be orthogonal to each of the basis

functions. That is,

fo QR d = 0 (53)

Substitution of Equation (51) into Equation (52) gives,

j2
fl~ ~ ~ ~~( QQQ 44 +pf 29(QT )44d +

L Jo

2p t f. Q(QTd4 - 2PL l 4g (T ) d (54)

L 4gl (QT \4 d + P~L Q (QT ) d f' = pQ d3
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After performing two integrations by parts on the first term

(See Appendix D), Equation (53) becomes,

f22

2P~ fl ~Q(QT ) d4 8 2 Pi3 fl 4QQ d4 (55)

. f Q(QT ) d4 8 + P L fl Q(T) d fl p - d4

where B.T. is the vector of boundary terms resulting from the

two integrations by parts,

B.T7. 0 0("ee I -];9 )~ o (56)

The kronecker delta property of the shape functions Qj,

results in the reduction of the boundary term vector to,

(IV")4 (0)
(9"4 (0)

0
0 (57)

B.T1.0
0
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The non zero terms in the B.T. vector represent the non

dimensionalized loads and moments applied at the boundaries.

If there is no applied load (or moment) at the boundary, then

B.T. is simply the zero vector.

A discussion of the second term of Equation (54)

follows. The integration by parts performed on the first term

of Equation (54) results in a self adjoint (symmetric)

operator, a condition which is generally desired since it

reduces storage requirements during computer processing.

Integration by parts on the second term,

f'4 2 d2 (gT (58)

results in a B.T. on " evaluated at 4 = 1. Since the value

of 6" (i) is unknown, an integration by parts was not performed

on the 'Ut.
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Letting,

A fl Qt4 Q")44 d4

C fl2Q (QT ), d

C = ~Q ~r \(59)
D = fl Q (9),

F = fl Q p-d - B. T.

the final Galerkin Equation is,

A6 + t-2 B +20 kc8- (60)
L I

2P3 C - Of C 8 + PL D b - F

The details of the construction and form of the A, B,

C, and D matrices are contained in Appendix B.

4. Integration of the Galerkin Equation

a. Reduction of the Second Order System

Equation (59) is a system of second order ordinary

differential equation in time. For numerical integration

purposes, it is desirable to reduce th's second order system

to a first order system in time.
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For compactness, let,

K = L -B+ wLc

M =2L C (61)
L

JP 1

Then, Equation (59) becomes,

(62)

Letting (c = 8, it follows that,

(63)

and Equation (59) now becomes the first order system of

equations,

(64)

Dd) =Nt +K8 +P

34



In explicit matrix form, Equations (62) and (63) may be

written,

E [0 0 :Ii(65)

0 .D K .M

Letting,

G = ... ... . = ... ... . a n d , 4 ..=
[0LDILL (66)

the second order system of Equation (59) is reduced to the

following first order system in time.

G = H +a (67)

Vector 9, becomes the zero vector if vector P is a

zero vector. Referring to Equations (59) and (60) we see that

P is actually defined by vector F which is defined further by

the boundary term vector B.T., and the vector describing the

contribution of an internally applied load, p*. If B.T. is

the zero vector (no applied moment or load at the boundaries)
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and there is no internally applied load, then k and fl are zero

vectors. Evaluation of the B.T. vector has also resulted ii

satisfying the natural boundary conditions imposed on Equation

(34). Equation (66) now becomes,

G if x (68)

b. Boundary and Initial Conditions

Prior to integrating the system described in

Equation (67), the boundary and initial conditions on Equation

(34) must be imposed. The boundary conditions at the free end

(4=1), were imposed through the boundary term vector as

previously described. The strategy used to impose the

essential boundary conditions at the "fixed end" (4=0), is one

in which the deflection and slope at the "fixed end" are set

to zero when the X vector is initialized, and the G and H

matrices are altered such that the deflection and slope at 4

= 0, remain constant with time. If the first and second time

derivatives of deflection and slope at 4 = 0 are constant and

equal to zero, then the desired conditions of zero deflection

and slope at 4 = 0 are obtained providing that the initial

conditions on deflection ('(0,0) = 0), and slope (0(0,0) = 0),

are satisfied.

Initial conditions are imposed through the

initialization of the X vector in accordance with the problem

being investigated. Referring back to the global FEM
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formulation, we recall that each nodal point has two DOF. To

satisfy the two DOF, deflection (and its velocity), as well as

slope (and its velocity), must be initially defined at each

node• The initial co ndltioji i alsu satisfy the essential

boundary conditions at = 0. The initial conditions are more

clearly understod if the X vector is given in greater detail,

Vi

01

vK (69)

81
ko

where the * subscript indicates the terms are the non

dimensional variables (and their derivatives) and therefore,

are functions of 4, not x.
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The matrices and vectors of Equation (67), modified

for the boundary and initial conditions follow,

x 0

(70)
G .. ... ... °... ... ... .... " ... ... .. ... ... °. ... o.

1 0 0 ... 00 0
0 1 0..0 0 0

0 D

where only the first two rows of D are altered as shown and,
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0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 x

(71)

H .. ... .... ... .. .... .. ... ... ... ... ... ... ,.

0 0 0 ... 000 0 0 0 ... 0 0 0

0 0 0 ... 0 0 0 0 00 -.. 0 0 0

K M

where only the first two rows of I, K, and M have been altered

as shown and,

(72)
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and,

vi

Vff (73)

eli

B. FEM VERIFICATION

The static cantilever beam provides a problem for which a

known solution is available for comparison and verification of

the FEM development and Fortran code.

For the static cantilever beam, the Euler equation of

lateral motion (Eq. 1) is reduced to,

EIV.4(x) = p(x) <x<L (74)
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with the boundary conditions,

v (0) = 0 EIV (L) = M (moment)
(75)

V,(0) = 0 EIV,=(L) = P (load)

Referring to the Euler equation of lateral motion (Fq.

25), and considering that for the static cantilever beam,

. = 0 (76)

=0

Equation (73) transformed to the non dimensional coordinate

becomes,

v L 4 _p(4) 0 < 4 < (77)

with the boundary conditions,

v(0) 0 EX )

(78)

v4(0) = 0 Ev P

Referring to Equation (34), the final spatially non

dimensional static beam equation, where the lateral deflection
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has also been non dimensionalized, becomes,

T( -= p( ) 0 < < 1 (79)

with the boundary conditions,

v,(0) = 0 EX l (1) = M

(80)

vz(0) = 0 EXVl4(1) = P

The Galerkin FEM formulation for Equation (78) and its

boundary conditions is obtained from Equation (59). Again,

recalling that,

L=L= 0 (81)

-- 0

Equation (59) becomes,

A =F (82)

where,

F = Qp d - B.T. (83)
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and, if there is no excitation internal to the system other

than at the boundaries (p = 0) then,

F= 0 -B.T. (84)

The boundary conditions given in Equations (79), must be

imposed prior to solving the system of Equation (81). To do

this the boundary term vector B.T., resulting from the

integration by parts on the Vik operator and shown in

Equation (56),

-V44 (0)
4(0)

0
0 (56)

B.T. -

0

0
VZ4 (1)

is evaluated using the boundary conditions at the free end of

the beam ( = 1).
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Rearrangement of terms in Equations (79) gives,

MLEI

(86)
v~(l) -pL

2vi 11)
EI

The B.T. vector can be rewritten as,

-VZ44 (0)

0

0

B.T.= (87)

0
0

PL 2

EI

ML
EX

Next thE -oundary conditions at the fixed end ( = 0) are

imposed. Recalling that 8 = v= V*(0) and 82 - = 0(0) , the

boundary conditions at the fixed end are imposed by altering

the first two rows of both the A matrix, and the B.T. vector

to force 81 and 82 to zero.
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The final system can be written as,

1 00 ... 0 00 0

0 10 .. 000 2 0

A31  ... A

= (88)

PL 2
ET

Awl Am ML
EI

where N is the number of degrees of freedom.

The solution to this system is,

v!

6 = (89)
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fpL 2 (rML
if (or -) is set at unity, then to obtain the 8 for

Ex El

actual values of PL2 (or ML), the 8 vector is multiplied by PL2

E I Ex Ex

(or ML
EX

The exact solutions for the deflection and slope at the

free end of a cantilever beam subject to a concentrated load

(or moment) are obtained from the following expressions,

V (L) P L O(L) =L

(90)

V(L) ML 2  0 (L) MLV (L = EX

where P (or M) is the load (or moment) applied at the free

end.

The 8 vector is the vector of non dimensional deflections,

and slopes. The dimens ial vector is obtain by multiplying

the non dimensional displacements (81 for odd i) by L in

accordance with v-- Lv. Since slope is a non dimensional

quantity to begin with, the 0*'s (6 for even i) are equal to

the 0's.

The Fortran code used for this verification and comparison

is located in Appendix C. Results of the verification, also

in Appendix C, confirm the FEM development.
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C. THE F(t) PRESCRIBED SOLUTION METHOD

The final and most complex case posed in Chapter II was

the case where the axial force, F(T) is prescribed. In this

case an equation for axial motion, in addition to the Euler

equation of lateral motion, was required. That equation was

the Euler equation of axial motion. Together these two

equations form a nonlinear, coupled, initial-boundary value

problem. After the linearization of these equations, the

linear, coupled, initial-boundary value problem consisted of

the following equations,

= p* (g,T) -- 0

(91)

t+ C + C2 L + C3 + C4 . + C5 L + C6 + C7 L = C8 F(11) (92)

where p* = 0 for the no internal excitation case, and Ci are

defined in Equations (43).
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By defining new terms, J, which require updating during

the time integration process,

J 1 (t) = C2 + C5 + C7

J 2 (t) = C4  (93)

J 3 (T) = C, + C3 + C6

Equation (45) becomes,

f + J, L + J 2  -C 8 F(t) - J 3  (94)

Equation (93) is a second order differential equation in

time. Letting,

(95)

and using substitution, the following system of two first

order differential equations is obtain;

q= L (96)

+ JL + 72S = Cg F (t) - J3

Since L(t) and its derivatives do not depend on a spatial

variable, Equations (95) do not require a FEM formulation and

are directly added to the system of equations for lateral
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motion. The matrix equations for lateral motion will be

similar in structure to the system of Equation (64). However,

the 'secondary' variables (or terms) introduced in the

linearization of the equation, are assigned their values from

the previous integration. Therefore, the sub matrices D, K,

and M which contain these variables (or terms), appear with

the * subscript. Q is the zero vector because there is no

internal excitation, and the natural boundary conditions used

to evaluate the B.T. vector are equal to zero (moment=load=O).

The matrix system of equations which is obtained after adding

Equations (95) to the system in Equation (96) is shown here,

EX 0J}=Z 0 X 0i (97)
0 D. K. M.
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The final system for the F(t) prescribed case is,

" 0 " 0

I 0

... ... ... ... ... ... ... .. !

0 D.

i 0
..° .. .. .. .,, ... ... ... ... ... .

0 +-* 0 :1 : 0 ,

... ... ... ... ... ... ... ... ... ..., .O 0 .0 1

o .. 0 " 0

0 I 0

. ... ... ... ... .. . .

(99)K. M.0
+ 0

o 0

... . . . . .. . . .... . ... ... ... ... ...

0 4 0 0 1 L 0... ... .. .. .. .. .. .. ....
0 4 0 -J " -J2  Cs F -J3

The boundary and initial conditions for the equation of

lateral motion, and the initial conditions for the equation of
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axial motion, are imposed using the strategy applied in the

L(t) specified case, and described in Section A of this

Charater.
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IV. CASE STUDY REPORT AND CONCLUSIONS

A. GENERAL DISCUSSION

After verification of the finite element code the

investigation of the transient problem began. The primary

emphasis of the studies that follow is on obtaining solutions

to problems, and not on investigation of numerical

considerations. However, when appropriate the researcher's

thoughts on such considerations will be presented.

The case studies reported are investigations of the L(t)

prescribed condition. For reference, the system developed in

Chapter III for the L(t) prescribed case is repeated here,

K ii0 0 K xt (100)

or,

Gi = Hx (101)

The above system does not reflect the alterations made to

impose the boundary conditions on load and moment at the free

end as the case studies addressed only the case of homogeneous
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boundary conditions (P=M=O), with no internal excitation

(p*=O). Thus the P vector is the zero vector, and does not

appear in the system above.

The transient problem introduces the requirement for a

numerical integration method. To perform the integration on

the system above, the IMSL, Inc. integration subroutine,

DIVPAG was chosen. DIVPAG is a double precision first-order,

initial-value, ordinary differential equation solver.

Two classes of implicit linear multi step methods are

available. The first is the Adams's method and the second is

the backward differentiation formula (up to fifth order), also

called Gear's stiff method. An accepted measure of stiffness

is the ratio of the maximum and minimum eigenvalues (X, X.)

of a system. A problem is considered stiff for very large

X .x/.in ratios. The vibrating cantilever beam equation of

motion results in a stiff system, and therefore, Gear's stiff

method is used.

1. Time Step Convergence

The integration routine uses an internally determined

time step such that a measure of global error does not exceed

a user specified tolerance. This feature of DIVPAG provides

error control to the user of the integration routine.

However, a recognized short coming of this integration package

as applied to this problem, is the inability to update the G

matrix on the left hand side of Equation (100) at each of the
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subroutine determined time steps. That is, as a result of

the call structure of the subroutine, an update of the finite

element matrix G for a change in L(t) and its derivatives, is

only possible outside of the subroutine. For this reason

DIVPAG is placed in a Do Loop and the G matrix is updated at

each entry to DIVPAG. Although the H matrix could be

evaluated inside DIVPAG via a FNC subroutine argument of

DIVPAG, in this investigation it was not. It was updated at

the same time the G matrix was, that is, at each entry to

DIVPAG. The accuracy of the numerical solution depends upon

the frequency of updating of the G and H matrices. Entries to

DIVPAG were at .025 second intervals for all case studies with

the exception oZ the final case study for which entries were

made at .01 second intervals. A rapidly changing L(t)

requires more updating of the matrices than would a f.lowly

changing L(t). In effect, a solution ultimately should be

checked for "time grid" independence.

2. Spatial Grid Convergence

Convergence of the solution for the spatial grid is

yet another consideration. The solution is a function of the

number of elements (i.e., NDOF). For linear problems, it can

be shown that in the limit, as the number of DOF approaches
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infinity, the approximate solution of .9 approaches the exact

solution V, that is,

LIM7 -V (102)
NDOF--*o

However, for a nonlinear problem there is no guarantee, but a

likelihood that the approximate solution converges to the

exact solution in the limit as the number DOF approaches

infinity. A preliminary study conducted during the first case

study showed that negligible differences existed between the

eight and sixteen element solutions for that particular

problem. This was the basis for the use of an eight element

solution for all subsequent problems. However, it is

recognized that the FEM model changes with length (or time).

Since the number of elements (NEL) is constant with time,

convergence for a given NEL may change with time as well.

Furthermore, the effects of material properties, geometric

dimensions, and functions of L(t) (and its derivatives), may

also influence the NEL required for a spatial, grid

independent solution.

3. Computational Effort

Related to the stiff character of the problem, is the

very large amount of computational effort (CPU time) required

to obtain solutions. A study of CPU requirements was not

conducted. However, integration of a problem over a real time
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five second period took as long as a week. Typically, DIVPAG

performed its integration over 2.\-6 second steps. Thus, every

.1 second increment in time required approximately 500,000

integration steps. Processing was conducted using the Naval

Postgraduate School IBM 3033 main frame time share system

during weekday non peak hours (1800-0900), and weekends.

During these periods, it is estimated that approximately 20

percent of time share CPU was allocated to the processing of

this job. A restart capability was coded to assist in

processing during non peak hours only.

4. The Case Study Beam

The case studies that follow are conducted using

material properties similar to those of plexiglass. The

modulus of elasticity (E) is equal to 100,000 psi. The

initial length of the beam, L0 is 10.0 inches for all case

studies. Two moments of inertia of the beam cross-section

(indication of beam rigidity, which effects the stiffness of

the problem) are obtained from the cross-sectional dimensions

shown in Figure (4.1). In recognition of the stiff nature of

the problem, and in interest of solving a realistic problem in

the minimum amount of time possible, our desire was to select

a material with the smallest value of frequency, which is

proportional to,

E1 (103)
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Thus, for a beam of given geometry (I/L'), plexiglass was

selected as a realistic material with the smallest E/p ratio.

S10"1

0.125"
St =  0.0625"

Figure 4.1 Beam Geometry

B. FIRST CASE STUDY, NEGLIGIBLE DERIVATIVES OF L(t)

The strategy used in the case studies is to progress from

the less to the more 'difficult' cases. What is intended by

'difficult', is that fewer differential, and hence, finite

element operators are involved in the Fortran coding for the

less difficult case. The general program development logic is

the same for all the transient case studies, however; it is

generally good practice to limit the size of the code until

the logic is tested and functioning as. expected. By

eliminating the derivatives of L(t), only the A part of the K

matrix (See Equation (105)) and the D matrix of Equation (99)

need to be evaluated.
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If the derivatives of the specified function of L(t) are

zero or negligible, the equation of lateral motion is,

444 =0 4 (104)SEl ''

subject to boundary and initial conditions.

For this case, the matrix system of Equation (99) becomes,

Ir 0l (105)
0 D K 0

where the K sub matrix,

F.1  L2 ~ j

K A + B + - LC (106)T= -

is reduced to,

K A (107)

This case was examined for the plexiglass beam with the

larger cross sectional dimensions. The material and geometric

properties used are p(mass/unit length) = 6.988E-6 lbf-S2 /in 2

(slugs/in) and, moment of inertia I = 81.38E-6 in4.
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The homogenous boundary conditions are imposed as

described in Chapter III. The initial conditions (X vector)

are imposed by an initial parabolic deformation (Fig. 4.2) of

the beam. The X vector is initialized for all DOF according to

the following displacements (and slopes),

v(,O) = .l 2
(108)

V (4,O) = .2(

and velocities oZ displacements and slopes,

( =,0) 0 (109)

v,v'

.2 . . .. .

V

1.

Figure 4.2 Parabolic and Linear Initial
Conditions Plot Case Study One and Four
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The prescribed functions of L(t) and its velocity are,

L(t) = Lo - .16t (110)

t(t) = -. 166

The L(t), function was constructed to permit the beam to be

drawn half way (i0 inches) into the sleeve (hole) in 60

seconds. Figure (4.3) is a plot of L(t) and velocity, L(t).

L, L
10.

L

L

0. J 60. time

-.166

Figure 4.3 Length and Velocity Function Plot
Case Study One
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This problem was solved for a four, eight, and sixteen

element discretization. This was the only investigation of

grid independence conducted. The results of this

investigation were discussed in the subsection on spatial grid

independence.

C. SECOND CASE STUDY, PARABOLIC FUNCTIONS OF L(t)

Two studies are conducted where L(t) is prescribed by

different parabolic functions. If L(t) is defined as a

parabolic function, its first and second derivatives are non

zero and significant (See Figures 4.5 and 4.6). Thus, the

system in Equation (99) is completely defined. In addition to

the dissimilar functions of L(t), the two cases are distinct

in their cross-sectional geometries.

The same initial conditions were imposed for the two

cases. An initial deformation of the beam in a parabolic

shape was imposed again as in the first case study and again

the initial velocities are zero. The X vector of Equation

(99) was initialized for all DOF according to the following

displacements and slopes (See Figure 4.4),

~=
(111)

V(,0)= 2
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and velocities,

0)= 0 (112)

o) 0

2. -

V1

V

0.0 .

Figure 4 4 Parabolic and Linear Initial Conditions

Plots Case Study Two

1. Parabolic L(t), The Less Stiff Beam

"Case One" of the second case study is the less

"stiff" problem. Figure (4.1) shows the cross sectional

dimensions. These dimensions -esult in material and geometric

properties such that p (mass/unit length) = 3.493E-6 lbf" S2/in 2,

and moment of inertia I = 10.17E-6 in4.
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A parabolic function of L(t) is prescribed such that

the beam is drawn to half its original length in 2.5 seconds,

reverses direction, and returns to it original length during

the next 2.5 seconds, for a total of 5 seconds. Figure (4.5)

is a plot of L(t) and its derivatives, velocity and

acceleration. The functions are,

L(t) =L o - 4t + .8t 2

(113)
L(t) = -4 + 1.6t {0 t 5 5.0) sec.

L(t) = 1.6

L#

10.

0.01 2.57 time

t 2 I
LI

0.0 - time

-4i

L

1.6 _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.0 time
I' 5.

Figure 4.5 Length, Velocity, and Acceleration Plots
Case Study Two (Less Stiff Beam)
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2. Parabolic L(t), The Stiff Beam

"Case Two" of the second case study is the stiffer of

the two parabolic L(t) case studies. Figure (4.1) shows the

cross sectional dimensions of the beam. These dimensions

result in material and geometric properties such that

p(mass/unit length) = 6.988E-6 lbf" S2/in2, and moment of

4inertia I = 81.38E-6 in

"Case Two" was started with the same parabolic

function for L(t) as "Case One". It was here that the

significance of "stiffness" and computational time came to

focus. Running the two cases simultaneously as separate jobs

on different system accounts, clearly demonstrated the

difference in CPU requirements for the two problemb. In fact,

there was such a disparity in computational effort that it was

decided to change the course of the stiffer problem ("Case

Two") such that it's symmetric, cycle would be complete in 2.1

seconds vice the 5 seconds of "Case One". The functions of

L(t) and their derivatives, along with their respective time

domains are given here,

L(t) = Lo - 4t + .8t 2

f(t) = -4 + 1.6t {0 < t 5 1.01 sec.

L(t) = 1.6
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L(t) = 33.2 - 50.4t + 24 t 2

it) = -50.4 + 48t {1.0 :5t 51.1) sec.

f (t) 4 48. 0

L(t) 5.128 + .64 + .8 t2

Li)=.64 + 1.6t (1.1 :5 t 5 2.1) sec.

f~t M 1. 6

These functions are plotted below in Figure (4.6).

L

time

time

L

___ ___ __ ___ ___ __ ___ __ time

Figure 4.6 Length, Velocity, and Acceleration Function Plots
Case Study Two (Stiff Beam)
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3. Discussion of the Parabolic Cases

The results of these runs provided one of the thought

provoking questions of the research. The purpose behind the

parabolic function of L(t) was to observe the beam's activity

in the case where it returned to its original length in a

symmetric, cycli= fashion. The interest was in the question,

would the expected symmetric behavior of the 'pull-push'

sequence of L(t) be predicted by the code? The results

clearly showed that symmetry did not occur for the parabolic

cases (See Figures (4.10) and (4.11)). In fact, the

deflections had grown considerably during the 'push' stage of

the L(t) cycle. Where did the energy to cause such large

deflections come from? One possible explanation considered

was that through the imposition of L(t), energy in the form of

work had been added to the system. This question was

addressed in the final case study, wherein the work associated

with fFdL was tracked. Another possibility, if the work

cannot account for the increase in displacements, is that the

results are not correct due to a break down in the numerical

integration during the latter stage of the 'push' stage of the

cycle.

Before continuing on to the next set of case studies,

a discussion of what is a most thought provoking question

resulting from the research thus far follows. What would

happen if the beam where drawn totally through the
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frictionless hole and then pushed back out to its original

length? At the end of the 'pull' stage of the cycle, the

entire beam resides motionless in a straight sleeve (the

frictionless hole) and therefore there is neither

deformational (strain) energy or vibrating (kinetic) energy.

Again, energy transfer out of the system as work could account

for this phenomena. In any case, it may not be possible to

show this with this numerical model for the following reasons.

For one thing, as the length of the beam shortens, the shear

and rotary inertia terms, which were not included in this

model, become ever increasingly significant and in fact may

dominate the physical behavior. Secondly, even if the

physical model could be modified to include these effects, the

frequencies tend toward infinity as L(t) approaches zero, and

numerical integration would not be possible.

D. HARMONIC L(t) PRESCRIBED

Two studies were conducted simultaneously on two beams

with the material and geometric properties identical to the

two beams used in the parabolic L(t) study. In this study,

L(t) was prescribed as the trigonometric functions of L(t) and
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its derivatives given here,

L (t) 9 +CSn

(t) = 53 SINfn) 10 t 5 3.0} sec. (116)

f~t) 71 (7)' 2 cs(t)

Accordingly, L(t) for these cases varied between eight and ten

inches (Fig. 4.7). The symmetric, cyclic concept was used

again as it was in the parabolic L(t) prescribed cases.

L 10.

P- time

L time

time

Figure 4.7 Length, Velocity, and Acceleration Function Plots

Case Study Three (Both Beams)
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A sinusoidal function was also prescribed for the initial

deformation of the 10 inch plexiglass beam. The X vector was

initialized for all DOF in accordance with the following

displacements and slopes,

v*i ,O) = 0.1 [1-Cos(77U
S(117)

and velocities,

)= 0 (118)

0)

The initial conditions on deflection and slope are shown

graphically in Figure (4.8).

v'v,

.157

.11

V

0.0 I.

Figure 4.8 Sinusoidal Initial Conditions Plot
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The previous results of increasing displacements (above

the initial displacements) observed for the parabolic L(t)

studies were not obtained in these harmonic L(t) case studies

(See Figures (4.12) and (4.13)). If the work explanation is

the correct one in the previous section, then it might be that

work is associated with parabolic L(t) axial motions, and not

with harmonic L(t) axial motions. In order to investigate

this question further, a investigation was undertaken to track

work for the parabolic L(t) case. This is discussed in the

next section. The computational effort observations of the

previous cases where noted again as well. That is, the CPU

requirement for the "stiffer" problem was greater than for the

"less stiff" problem, as it had been for the parabolic L(t)

cases.

E. CASE STUDY FOUR, TRACKING WORK FOR A. PARABOLIC L(t)

A final study was conducted using the "less stiff" beam in

which a parabolic L(t) was prescribed. The function and its

derivatives follow and are plotted in Figure (4.9).

L(t) = 10.0 - 2.666t + .888t 2

L(t) = 2.666 + 1.771t {0 < t - 3.0} sec.

L(t) = 1.771
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The X vector was initialized for all DOF according to the

initial deformation of the beam defined by the following

displacements and slopes,

v" (,o) = .142

(120)
V ( ,O) = .24

and velocities,

=*(4,0) 0 (121)

, ) - 0

These are the same initial conditions as used in the first

Case Study and are plotted in Figure (4.2).

L

0.0 " time

Lj

L.0 time

L

0.0 '- time

Figure 4.9 Length, velocity, and Acceleration Plots
Case Study Four
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The purpose of this final study was to determine whether

the increased displacements predicted by the code for the

parabolic L(t) cases. during the latter stages of the 'push'

stage of the cycle, could be accounted for by work input to

the system. In addition to tracking work, the moment and

shear were also tracked. The shear diagrams, shown in Figures

(4.15) to (4.17), and moment diagrams, shown in Figures (4.18)

to (4.20), appear to be reasonable. The small values of these

parameters is due to the values of Young's modulus, E, and

moment of inertia, I, used in this study. The product of EI

for the cases studies here are 1.017 lb. in2, and 8.138 lb.
in2.

The diagrams for axial force F and work W, shown in Figure

(4.21) do not appear to be reasonable and therefore are

suspect. Assuming a one to one relation between L(t) and F(t)

exists, it is difficult to imagine that such a force would

produce the smooth parabolic L(t) and vice versa. A tentative

conclusion therefore is that either F(t) was not coded

correctly or that there is in fact an instability in the

numerical integration during the latter stage of the 'push'

cycle of the problem. An effort is presently underway to

determine if the coding for the calculation of F(t) is

correct. It should be remarked however that prior to the

erratic behavior of F (t), which occurs late in the 'pull-push'

cycle, the values of F(t) seemed reasonable.
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F. FINAL COMMENTS AND RECOMMNDATIONS

The results of this initial investigation on the behavior

of a vibrating beam subject to a prescribed axial motion leads

to the following conclusions. First and foremost is that the

implementation of the FEM numerical scheme was accomplished

with success, although it is not certain that some numerical

difficulties are not encountered at the later stages of the

analysis. Further work must be undertaken to resolve whether

the increase in vibration amplitude which is predicted by the

code is an actual result of work input to the system or

whether it is associated with a numerical instability. Prior

to the investigation of the 'real' gun barrel problem, One

might also investigate whether the omission of axial strain

energy form the model, which is common whenever bending and

bar activity coexists, could account for this behavior. If

so, additional terms for axial strain energy could be included

in the formulation.

It is interesting to note that the equation of axial

motion relates the axial force F(t) not only to the axial

acceleration L, in accordance with Newton's law of motion for

rigid bodies, but also includes additional terms associated

with the deformational strain energy of bending, and the

kineLic energy of beam vibration, at the free end of the beam.

The former term adds to the acceleration term while the latter

term decreases it.
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The practical problem associated with the axial motion of

a gun barrel due to the recoil action of firing, which

provided the impetus for this study, was formulated but not

solved here. An experimental investigation should be

undertaken to ascertain the accuracy of the numerical model.
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PARABOLIC AXIAL MOTION
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Figure 4.10 Parabolic Axial Motion Transient Response
Case Study Two (Stiff Beam)
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PARABOLIC AXIAL M~OTION

10~

8-

6-

4-

2-

-2-
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Figure 4.11 Parabolic Axial Motion Transient Response

Case Study Two (Less Stiff Beam)
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HARMONIC AXIAL MOTION

10-

7.5

0 I

5-

00. 1.5 2 2.5 3

TIME (SEC)

Figure 4.12 Harmonic Axial Motion Transient Response

Case Study Three (Stiff Beam)
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HARMONIC AXIAL MOTION

10-

7.5

5

0-

-2.5
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0 0.5 1 1.5 2 2.5 3

TIME (SEC)

Figure 4.13 Harmonic Axial Motion Transient Response
Case Study Three (Less Stiff Beam)
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PARABOLIC AXIAL MOTION

10-

7.5-

25-

X 2.5-

I I F

0 .51 .52 5

- 5 -. 
. . . . .... . . . . . . .. .. O W.

. ............ 

. . . . . . . .° .

....... .......

TIME (SEC)

Figure 4.14 Parabolic Axial Motion Transient Response
Case Study Four

79



0.15-

0.10-

0.05-

0.00-

IV

-0.05

-0.10-

.0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TIME (SEC)

Figure 4.15 Shear Plot (0.0 - 1.0 Seconds)
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Figure 4.16 Shear Plot (1.0 -2.0 Seconds)
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Figure 4.17 Shear Plot (2.0 -3.0 Seconds)
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Figure 4.18 Moment Plot (0.0 - 1.0 Seconds)
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Figure 4.19 Moment Plot (1.0 - 2.0 Seconds)
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Figure 4.20 Moment Plot (2.0 - 3.0 Seconds)
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Figure 4.21 Force and Work Plots
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APPENDIX A

THE CUBIC SPLINE SHAPE FUNCTIONS

The beam element is constructed using four shape functions

(qj, q2, q3, and q 4) which satisfy the following conditions.

q, (NP2) =0 , q (NP2) -0

q2 (NP1) =0 , q, (NPI) =1
q 2 (NP2) = 0 , q2 (NP2) = 0

T q 3 (NPI) = 0 r q3 (NP1) = 0

q 3 (NP2) = 1 , q3 (,P2) = 0
| 2.

q4 (NP1) =0 , q4 (NP1) =0

q4 (NP2) = 0 , q4 (NP2) = 1

where the (') superscript represents a differentiation with

£et.ect to the spatial variable.
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By satisfying the four conditions on each q, the four

element shape functions can be constructed from a cubic

equation of the form,

qt = a. + bi a + c a 2 + dIa 3

qi is constructed here as an example.

q, = a, + b, 0a + c i aC2 + d i aC3

1. qi(NP1) =1 = 1 = a.

2. q'(NP1) =0 0 = b i

q!= 1 a c 2 + di a3

3. q.(NP2) =0 ' 0 = 1 + cl 1.
2 + d, 1.3

4. ql(NP2) =0 0 = 2C 1, 3d i  i c1-

substitute (4.) -4 (3.) d i  and, c 3 3
13 1.

thus,

q= 3 (>2 + 2 a3
1 T2
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Using the conditions which define shape functions 1, q3,

and, q4 (listed on the previous page) the other three shape

functions are obtained,

q= - 2 2 + 1 3

lo 1

S3 a2 
2

12 .3/2. 1.

1 C2 1 O3

.1.
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A PENDIX B

CONSTRUCTION OF THE GLOBAL MATRICES

The global matrices A, B, C, and, D are constructed from

the element matrices a*, b, c', and, d! according to

relationships;

A f Q"(QT )"d = U a-

B - 2 Q (Q )"d4 U b-
(129)

C = 4 TQ (QT )'d4 = U c-

D = Q (Q )'d4 = U d-

where,

a" = f q"I(qT )" da

b. =2 f q (q)" da

(130)

c = f q (qT')' doc

d-=ff q(q7) dc

given that is a constant which approximates 4 transformed

to the local coordinate a.
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The transformation of is as follows. Rfl[frriig Io

Figure (B.1),

X -4 T where, iL, = 1
1- 1

and, %2 - 1 O

Because the transformation of to a function of x results in

integrals which are difficult to evaluate, it is desireable to

use an alternative strategy. If we let,

2

a numeric value can be assigned to this quantity. Thus, the

difficult integration is eliminated. Any accuracy lost in the

approximation will be recovered by additional interations to

obtain convergence of the FEll solution.

I - q ,I -I

Figure B.1
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The final as, b*, c*, and, d* matrices follow,

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

6 11 6 1
51. 10 51. 10

1 21. 1 1.
-T TT5 - 1 u -
6 1 6 11

5. 10 51. 10

1 1. 1 21,
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f- T--- -f -10-
1 0 1. 1.2

i 1 1 I.

-1-6 -fTu0

Ce =

131. 111 2  9 131 0 .2

5- 2-f10 77 4-fT

11 l. 1 ' 13-1.2 1

-TIT -T- -47T 140

131 . - .'. 111. .1
-4O 2 ---4- -T'IT 15
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APPENDIX C

STATIC CANTILEVER BEAM FORTRAN CODE
AND SAMPLE OUTPUT

*MARK R. DEVRIES LT USCG
*NAVAL POSTGRADUATE SCHOOL
*SEPTEMBER 1990
*THESIS

MASTER OF SCIENCE IN MECHANICL ENGINEERING

*TITLE:

VIBRATION OF A CANTILEVER BEAM
THAT SLIDES AXIALLY IN A FRICTIONLESS HOLE

THE FOLLOWING FORTRAN CODE IN A VERIFICATION OF THE FINITE
ELEMENT FORMULATION FOR THE TRANSIENT PROBLEM TO BE
PURSUED IN THE NEXT PROGRAMING STEP.
THE PROGRAM VERIFIES THE INITE ELEMENT METHOD
CODE LOGIC ON THREE POSSIBLE STATIC BEAM PROBLEM.
(I) FIXED END WITH TWO ROLLER SUPPORTS, ONE AT THE CENTER
AND A SECOND AT THE OPPOSITE END. THIS BEAM IS LOADED BY
A CONCENTRATED MOMENT AT THE ROLLER SUPPORTED END.
(2) AND (3) ARE CANTILEVER BEAM PROBLEMS, ONE LOADED BY A
CONCENTRATED LOAD AT THE FREE END AND THE OTHER LOADED
BY A CONCENTRATED MOMENT.
THE PROGRAM IS NOT FLEXIBLE IN THAT IT REQUIRES EDITTING
AS NOTED IN COMMENT LINES IN THE FOLLOWING SUBROUTINES
DEPENDING ON WHICH OF THE (3) CASES IS BEING RUN. THE SOLE
PURPOSE OF THIS PROGRAM IS TO VERIFY THE FEM FORMULATION,
IT IS NOT INTENDED TO IMPRESS SOLFWARE ENGINEERS.

(1) SUBROUTINE BC
(2) SUBROUTINE OUTPUT

*VARIABLE IDENTIFICATION

* NEL - NUMBER OF ELEMENTS
* NSNP - NUMBER OF SYSTEM NODAL POINTS
* NDOF - NUMBER OF DEGREES OF FREEDOM
* E - MATERIAL MODULUS OF ELASTICITY
* GI - SECOND MOMENT OF THE BEAM CROSS-SECTION AREA
* BLGTH - BEAM STATIC LENGTH
* ELE - ELEMENT LENGTH
x BCM - EXTERNALLY APPLIED MOMENT AT FREE OR SIMPLY SUPPORTED
* END

BCFORC- EXTERNALLY APPLIED FORCE AT FREE OR SIMPLY
*SUPPORTED END
* NDETRM - VARIABLE USED IN LOGIC STATEMENT FOR TYPE OF B.C.
* SLOPE - SLOPE AT FREE END OF CANTILEAVER BEAM
* DEFLEC - DEFLECTION AT FREE END OF CANTILEAVER BEAM
* FACTOR - SCALOR NON-DIMENSIONAL GROUP

PARAMETER (N=70)
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DIMENSION A(N,tl),F(N)
DIMENSION NKAREA(6000)
OPEN(10, FILE='/MATRIX OUTPUT')
CALL ZEFO (A,F)
CALL DATA (NEc L,NSNP,NIDOF,E,GI,BLGTH, ELE,BCM,BCFORC)
CALL MATX (A,F,ELE,NEL,tND0F)
C ALL 8C (A,F,NDOF,NDETRM)

CALL LEQT2FCA, 1,NDOF,NJ,F,O,LJ!KAR<EA,IER)
CALL OUTPUT (N4SNP,ELEF,BCM,BLGTH,E,GI,NiDETRM,24DOF,BCFORC)
STOP
END

C
C
C ZERO ALL MATRICES
C *

SUBROUTINE ZERO (A,F)
PARAMETER (1J70)
DIMENSION A0N,N), F(N)

DO 20 I~1,N
F( 1)=zO.0
DO 10 J=1,N

A(!, J J0.0
10 CONTINUE
20 CONTINUE

RETUJRN
END

C
C INPUT DATA

SUJBROUTINE DATA (N EL,N4SN'P,N4DOF,E,GI,BLGTH,ELE,BCM1,BCFORC)

PRINT X, 'EN4TER THE NO0. OF ELEMENTS TO BE USED IN THE APPROX.'
READ * ,NEL
kNRITEC6,20) NEL

20 FOfkMAT (/2XNO. OF ELEMENTS IS',I5)
NSfP = N EL+ 1
LiRITE(6,25) NSNP

25 FORMAT(2X,'NO. OF SYSTEM NODAL POINTS IS',I5)
N DO F =2 * N$N P
WRITE(6,?6) NDOF

26 FORMA(2X,'NO. OF D.OF. IS',I5)
PRINT *,'THE MODULUS OF ELASTICITY IS?'
READ '*,E
WRITE(6,27) E

27 FOV'-'-T (/2X, 'MDDULUS OF ELASTICITY IS', F10 .1)
PRINT *,'THE SECOND MOMENT OF THE BEAM CROSS-SECTION AREA 137'
READ *,GI
I-,RITE(6.28) GI

28 FOR;MAT(/2X, 'THE SECOND MOMENT IS',F1O.1)
PRINT '(,'THE INITIAL LENGjTH OF THE STATIC BEAM IS?'
READ *,BLGTH
HRITE(6,29) BLGTH

29 FORMAT(/2X,'THE BEAM LENGTH IS',F8.3)
ELE=1. O/FLOAT(NEL)
PRINT *,'ENTER THE VALUE OF THE APPLIED MOMENT'
READ *,BCM
WRITE (6-30) BCM

30 FORtlAT(/'2X, 'MOMENT'l,F8 .1)
PRINJT *., ENTER THE VALUE OF THE APPLIED FORCE'
READ X,BCFCRC
kkITE (6,40) BCFORC

40 FORMAT(/2X,lFORCE'l,F8.l)
C

RETURN
END

C
C FILL LARGE A
C

SUBROUTINE MATX (A. F, ELE,NEL,NDOF)
PARAMETER 04=70)
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DIMENSION A(N,N),F(N)
C
C CALCULATE LITTLE A MATRIX
C

A11=12. 0/C ELEw*3 .0)
A12=6 . /(ELE**2. 0)

A14=Ai2
A21=A12
A22=4. 0/ELE
A23=C-1 .O)*Al2
A24=2 .0/ELE
A31=A13
A32=A23
A33=AI 1
A34=A23
A41 =A14
A41=A24
A43=A34
AY4=A22

C
c FILL LARGE A MATRIX
C

1 2N EL -1
C

DO 10 I=1,L,2
C

AC1,1 )=A(I,I)+All
ACI,I+1)=A(I,1+1)+A12
ACI, I+2)=Al3
ACI, I+3)=A1',

AC 1+1,1 )=AC +1,1 )+A21

AC 1+1, I+2)=A23
ACI+1,I+3)=A24

C
AC 142,1) =A31
AC 1+2,141 )A32
AC 142, I+2)=A33
A(1+2,1+3)=A34

C
AC 1+3,1 )=A41
AC 1+3, 141 )A42
AC 1+3, I+2)=A43
AC 1+3,1+3) =A4'.

C
10 CON4TINUE

C
RETURN
END

C
C
C
C THE FOLLOWING SUBROUTINE ALTERS THE GLOBAL MATRICES TO
C IMPOSE THE BOUNDARY CONDITIONS
C

SUBROUTINE BC CA,F,NDOF,NDETRM)
PA RAMET ERCN z70 )
DIMENSION A(N,N) ,F(N)
PRINT *,'E1NTER 1 FOR THE OVER DETERMINANT CASE OR'
PRINT )(,'2 FOR THE FREE END CASE.'
READ *, NDETRM
IF (NDETRM .NE. 1) GOTO 20

C
C AMEND A TO ACCOUNT FOR BOUNDARY CONDITIONS
C
C CHANGE FIRST AND SECOND ROWS TO ACCOUNT FOR THE ESSENTIAL
C BOUtDARY CONDITIONS AT THE FIXED END.
C
C
C THE J-TH EQUATION IS THE EQUATION DESCRIBING DEFLECTION AT
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C THE LOCATION OF THE CENTER SUPPORT. IT IS REPLACED BY THE
C ESSENTIAL BOUNDARY CONDITION ON DEFLECTION.
C
C THE (NDOF-I)TH EQUATION IS THE EQUATION DESCRIBING THE
C DEFLECTION AT THE ROLLER SUPPORTED END. THIS EQUATION
C IS REPLACED !Y THE ESSENTIAL B.C. ON DEFLECTION.
C

J=NDOF/2
DO 10 I=1,NDOF,l

C
A(1,1)0.0
A(2,I)O.0
A(J,I)=O.O
A(NDOF-1,I)0.0

C
10 CONTINUE

C
A(1,1)41.0
A2,2)1.0
A(J,J)=1.0
ACNDOF-1,NDOF-1)=I.0

C
GO TO 40

20 DO 30 I=1,NDOF,1
A(1,I)=O.O
A2,4)0.0

30 CONTINUE
A(1,1)=1.0
AC2,2)=I.0

C

C ***POINT LOAD***
C THIS LINE IS ACTIVATED FOR THE CANTILEVER BEAM LOADED
C BY A CONCENTRATED LOAD CASE
C

F(NDOF-I)=1.0
C
C X*NPOINT MOMENTX**
C THIS LINE MUST BE ACTIVATED FOR BOTH THE OVER DETERMINATE CASE
C AND THE CANTILEVER BEAM WITH A CONCENTRATED MOMENT CASE
C
C F(NDOF)=1.0
C

40 RETURN
END

C
C
C FORMULATE OUTPUT
C
C THIS SUBROUTINE CALCULATES THE EXACT SOLUTION FOR THE
C CANTILEVER BEAM CASES AS WELL AS PRINTS THE OUTPUT OF ALL
C CASES.
C

SUBROUTINE OUTPUT (NSNP,ELE,F,BCM,BLGTH,E,GI,NDETRM,NDOF,BCFORC)
PARAMETER(N=70)
DIMENSION F(N)

C
C NXIPOINT FORCE*X*

FACTOR=BCFORC*(BLGTH**2.0)/(E*GI)
DO 5 I=I,NDOF-1,2

F(I)=F(I)*BLGTH*FACTOR
F(I+I)=F(I+I)*FACTOR

5 CONTINUE
C
C *YPOINT MOMENT**
C FACTUR=BLGTH*BCM/(E*GI)
C DO 5 I=I,NDOF-1,2
C F(I)=F(I)*BLGTHXFACTOR
C F(I+I)=F(I+I)XFACTOR
C 5 CONTINUE
C
C WRITE(*,30)
C NRITE(*,40)
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IF (NDETRM .NE. 1) GOTO 15
W1RITE ( , 50)
J~l
XLOC:O .0

Do 10 I=1,NSNP,1
HRITE(*,2O) XLOC, F(J), F(J41)
XLOC XL OC+ EL E
J=J+2

10 CONTINUE
GO TO 80

C
C ~*XPOhNT LOAD****
C ACTIVATE FOR THE CANTILEVER-CONCENTRATE FORCE CASE
C

15 SLOPE=(BCFORC*(BLGTH**2.0))/(2.Ox*GI)
DEFLEC=(flCF0RC*(BLGTH**3.O))/(3.0*E*GI)

C
C *)0f)POINT MOMEIJT))E***
C ACTIVATE FOR THE CANTILEVER BEAM CONCENTRATED MOMENT CASE
C
C 15 SLOPE=(BCM*BLGTH)/(E*GI)
C DEFLEC=(BCM*ABLGTHX*2 .U) )/(2.OiXE*GI)
C

WRITEC(*,60)
W'RITEo(,65)
WRITEO*,70) DEFLEC,F(f4DOF-1),SLOPE, F(NDOF)

20 FORMAT(2X,F8. 3,3X,E12.4,3X,E12.4)
50 F0Rtl1'T(2X,' X-LOCAT. t1'2,-X,'DEFLECTION',3X,'SLOPE')
60 FORflAT(lX,' DEFLECTION AT B I', SLOPE AT B')
65 FORMAT(6X,'EXACT',I1X, 'FEM',IIX, 'EXACT',11X,'FEMt )
70 FOP)NAT(IX,E12.4,3X, E12.4,3X,E12.4, 3X,.E12.'4)
ESO RETURN

EN D
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NO. OF ELEMENTS IS 8
NO. OF SYSTEM NODAL POINTS IS 9
NO. OF D.O.F. IS 18
MODULUS OF ELASTICITY IS 30000000.0
THE SECOND MOMENT IS 100.0
THE BEAM LENGTH IS 100.000
ENTER THE VALUE OF THE APPLIED MOMENT
MOMIENT = 0.0
ENTER THE VALUE OF THE APPLIED FORCE
FORCE = 1000.0
ENTER 1 FOR THE OVER DETERMINANT CASE OR
2 FOR THE FREE END CASE.
?

2
DEFLECTION AT B SLOPE AT B

EXACT FEM EXACT FEM
O.1111E+00 0.1111E+O0 O.1667E-02 O.1667E-02
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APPENDIX D

INTEGRATION BY PARTS

The following is the detail of the integration by parts on

the first term of Equation (54),

{o Q (QT)k d (137)

The first integration results in,

f' Qg(Q2T)4 t d 6

(138)

A second integration performed on the integral in Equation (2)

gives,

- f24 (Q") kkk '4
(139)

Q4 (QT )4 1 ~+ flQ ((T ) d (39
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Combining Equations (1) , (2), and (3) gives the symmetric

operator and boundary terms below,

fo f(0T) d ~

[1QT28Q (QT) +fl Qk(QT )4 d4 8 (140)
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APPENDIX E

TRANSIENT BEHAVIOR OF A CANTILEVER BEAM FORTRAN CODE

*MARK R DEVRIES IT USCG
*NAVAL POSTGRADUATE SCHOOL
X SEPTEMBER 1990
*THESIS

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

*TITLE:
VIBRATION OF A CANTILEVER BEAM

THAT SLIDES AXIALLY IN A FRICTIONLESS HOLE

x THE FOLLOWING FORTRAN CODE UTILIZES THE FINITE ELEMENT
* METHOD AND AN IMSL PACKAGE INTEGRATION SUBROUTINE DIVPAG
* TO SOLVE THE ABOVE PROBLEM. THE PROGRAM IS IRITTEN WITH
* NUMEROUS COMMENT LINES WHICH EXPLAIN THE CODING.

* VARIABLE IDENTIFICATION *

* NEL - NUMBER OF ELEMENTS
X NSNP NUMBER OF SYSTEM NODAL POINTS
* NDOF - NUMBER OF DEGREES OF FREEDOM
* N,NN - DIMENSIONS OF MATRICES AS SPECIFIED IN DIMENSION
X STATEMENJTS
* E - MATERIAL MODULUS OF ELASTICITY
* GI - SECOND MOMENT OF THE BEAM CROSS-SECTION AREA
* ELE - ELEMENT LENGTH
* ALPHA - LOCATION OF ELEMENT LEFT GNP
x PSIAVE - ESTIMATE OF PSI
* PSISQ - ESTIMATE OF PSI SQUARED
* TEND - VALUE OF TIME AT WHICH THE SOLUTION IS DESIRED
* NEQ - NO. OF FIRST ORDER DIFFERENTIAL EQUATIONS
X TIME - INDEPENDENT TIME VARIABLE
* DELTME - TOTAL TIME INCREMENT FOR ONE INTEGRATION STEP
* BETA - CONSTANT DETERMINED BY BEAM MATERIAL PROPERTIES ONLY
* RATE - LENGTH CHANGE PER UNIT TIME
* EXEE - THE GLOBAL NONDIMENSIONAL AXIS, THAT IS, (X/L)
* DELTA - THE VECTOR OF NONDIMENSIONAL NODE DEFLECTIONS
* AND SLOPES. MUST BE MULTIPLIED BY L(T) FOR

ACTUAL DEFLECTIONS. SLOPES REMAIN THE SAME.

INCLUDE 'COMMON FORTRAN'
DIMENSION LELTA(NN),PARAM(NPARAM),WKS(NN)
DIMENSION YPRIME(NN)
COMMON /WORKSP/ RWKSP

REAL RWKSP(6608)

EXTERNAL FCN
EXTERNAL FCNJ
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OPEN(9, FILE='/MARK1 INPUT')
OPENK~O, FILE='/MARK3B OUTPUT')
OPEN(11, FILE:'/DATAI INPUT')
OPEN(12, FILE='/DATA2 INPUT')

CALL IWKIN(6608)
CALL ZERO (DELTAPARAM)
CALL DATA
CALL MATX

PI 3.141592654

C DEFINITION OF PARAMETERS REQUIRED BY IMSL MATH LIBRARY ROUTINE
C DIVPAG

IDO=1
N EQ=2*NDO F
TIME=TSTART
TOL= . OE-4
PARAM( 4) =2000 000

C PARAM(12) IS 1 FOR ADAMS METHOD AND 2 FOR GEAR (STIFF) METHOD

PARAM( 12 )2
PARAM( 13) 2
PARAMC 19) 1
PAR A !(20)=N N

C INITIALIZE THE DEPENDENT VARIABLE ARRAY DELTACNEQ).

*~CAUTION: THE NO!JDIMENSIONAL VSTAR IS CONSTRUCTED HERE.
*~TO OBTAIN THE ACTUAL INITIAL DISPLACEMENT CONFIGURATION, V,
*~SUBSTITUTE THE NONDIMENSIONAL COORDINATE AXIS EXEE IN THE
~xEXPRESSIONS BELOW BY (X/ZLINT) AND REPLACE VSTAR*ZLINT BY V

IF (ISTART.EQ.0) THE1N
IC=NDOF-1
EXEE =0.0
HRITE(10,N) 'THE INITIAL TIME PRIOR TO INTEGRATION ',TIME
WRITE(10,*) 'THE INITIAL DELTA VECTOR IS'

DO 10 I=1,IC,2
*C PIOV2 = PI/2.

cDELTA(I) =0.1 - O.lNCOS(PI0V2*EXEE)
C DELTA(I+1) = .1*PIOV2*SIN(PIOV2*EXEE)

DEL TA( I)=O . *( EXEExx2.0)
DELTA(I+1) =O.2xEXEE

WRITE (100) DELTACI)
WRITE (100) DELTA(I+1)
EXEE =EXEE + ELE

10 CONflINUE

ELSE
READ(Il,w) TSTARTZL
WRITE(10,x) 'RESTART TIME =',TSTART, 'WITH LENGTH ',ZL

WRITE(10,*) 'INITIAL DELTA IN RESTART FOLLOWS'
LJRITE( 10,*) (DELTA(JJ),JJ1l,NEQ)
TIME=TSTART

END IF

ID0=1

CALL FORM(IJEQ,TIME)

DO 1000 IEQ1I,NEQ
YF'RIME( IEQ)=O.O
DO 900 1C=1,NEQ
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YPRIME(IEQ)=YPRIME(IEQ)+H(IEQ,IC)*DELTA(IC)
900 CONTIN4UE

1000 CONTINUE

C WRITEC1O,*) 'INITIAL YPRIME VECTOR PRIOR TO ENTRY TO DIVPAG'
C WRITE (10,*) (YPRIME(IQ),IQ=1,NEQ)

WRITE(10,*) 'Ili INTEGRATION LOOP, TIME, LENGTH AND DELTA FOLLOWS'

WORK = 0.0
F1 RH0*ZLINIT*2.3XACC
VEE 6.*(DELTA(N4DOF-3)-DELTA(NiDOF-l))'ELE2
8+ 2.*(DELTACNJD0F-2)+2.*DELTA(?JDOF))/ELE
F2 = (EXGI)VEE**2)/(ZLINT*)2)
F3 =RHO*(-RATEXDELTACNDOF) + ZLINT*DELTA(NEQ-1)))(2
FNEW = F1 + 0.5XE(F2 - F3)
ZL = ZLINT

DO 30 IEND=1,NSTEP
FOLD FNEW
ZLOLD ZL
TE!JD=TSTART+DELTME*FLOAT( IEND)/FLOAT(N4STEP)
IF(TEND.GT.3.O) GO TO 35
CALL DTIME(IHOURMINUTE,ISEC)

C IF(IHOUR .LT. 18 .AND. IHOUR .GE. 7) GO TO 35
CALL DIVPAG (IDO,NEQ, FCl, FCNJ,G,TIME,TEND,TOL ,PARAM, DELTA)
IF (MOD(IEND,1).EQ.O) THEN
ZL ZLINT - RATE)ETIME + ACC*(TIME**2)
ZL2 ZL*3N2
ZLDOT -RATE + 2.*ACC*TIME
ZLDDOT 2.*AC

C ZL 9. + 1.* COS( PI*TIME/1.5)
C

l1RITEC1O,*)
fRITE(10,*) 'TIME ',TIME, 'LENGTH 1, ZL

NWRITE(10,x, 'DELTA FOLLOWS'
iikITEC10,*) (DELTA(IQ),IQ=1,NEQ)

C
ZMOM =(E*GI/ZL)*((6./ELE2)*(DELTA(3)-DELTA(1))

& -(2./ELE)*(DELTA(4)+2.*DELTAC2)))
SHEAR =(E*GI,/ZL2)*((12./ELE3)*(DELTA~l)-DELTAC3))

& +(6./ELE2)*(DELTA(2)+DELTA(4)))

WRITE(10,Ax) 'MOMENT ',ZMOM, 'SHEAR ',SHEAR

END IF

F1l RHO*ZLI14T*2.*ACC
VEE =6.*(DELTA(N4DOF-3)-DELTACNDOF-1))/ELE2

8~ + 2.*(DELTA(N4DOF-2)+2. *DELTA(NDOF))/ELE
F2 =(E*GI)iE(VEE**')/ZL2
F5 = RH0*(-ZLDOTWDELTA(14DOF) + ZL*DELTA(NEQ-1))*)2
FNEW = Fl + 0.5*(F2 - F3)

DELWORK = 0.5*(FNEW + FOLD)*(ZL - ZLOLD)
WIORK =WORK + DELWORK
WRITE(10,*) 'ZLDOT = ', ZIDOT, 'ZLDDOT =',ZLDDOT

WRITE(10,*) 'OLD F =', FOLD, 'NEW F ',FNEW

WRITE(10,M) 'WORK = ', WORK

CALL FORM(NEQ,TIME)

30 CCNTINUE
35 CONTINUE

IDO=3
CALL DIVPAG (IDO,NEQ,FCN,FCNJ,G,TIME,TEND,TOL ,PARAM,DELTA)
STOP
END
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C ZERO ALL MATRICES

SUBROUTINE ZERO (DELTA,PARAM)

INCLUDE 'COMMON FORTRAN'
DIMENSION DELTA(NN),PARAM(NPARAM)

DO 20 I=1,N
DO 10 J=1,N

A(I,J)=O.O
B(I,J)=O.O
C(I,J)=O.O
DCI,J)=O.O
R(I,J)=O.O

10 CONTINUE
20 CONTINUE

DO 40 I=I,NN
DELTACI)=0.0

DO 35 J=I,NN
G(I,J)=O.0
H(I,J)=O.O

35 CONTINUE
40 CONTINUE

DO 50 I=1,NPARAM
PARAM(I)=0.0

50 CONTINUE

RETURN
END

C INPUT DATA

SUBROUTINE DATA

INCLUDE 'COMMON FORTRAN'

READ (9,*) NEL,EGI,RHO,NSTEP,ISTART,TSTART,ZLINT,DELTME,RATE,ACC

WRITE(6,x) 'THE NUMbER OF ELEMENTS IS ', NEL

NSNP=NEL+1
NDCF:=2NSNP

WRITE(6,*) 'THE NUMBER OF SYSTEM NODAL POINTS IS ', NSNP

WRITE(6,*) 'THE NUMBER OF DEGREES OF FREEDOM IS ', NDOF
WRITE(6,0) 'THE MODULUS OF ELASTICITY IS ', E
WRITE(6,*) 'THE MOMENT OF INERTIA IS ', GI
NRITE(6,0) 'THE MASS PER UNIT LENGTH IS ', RHO

ELE=1.O/FLOAT(NEL)
ELE2 = ELE*x2
ELE3 = ELEW3
BETA=RHO/(E*GI)
WRITE(6,*) 'THE VALUE OF BETA IS ' ,BETA

WRITE(6,X) 'THE NUMBER OF INTEGRATION STEPS IS ', NSTEP
WRITE(6,0) 'ISTART IS 1 FOR RESTART; HERE IT IS ', ISTART
WRITE(6,*) 'THE INITIAL LENGTH IS ', ZLINT
WRITE(6,*) 'RATE OF AXIAL MOTION IS ' , RATE

RETURN
ENJD

C FILL LARGE A
C

SUBROUTINE MATX
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INCLUDE 'COMMON FORTRAN'

C CALCULATE LITTLE A MATRIX

All=12 .0aicELE**3.0)

A12=6 .0/(ELE*x2.0)

A14=A12
A21 =A12
A22=4.0/ELE
A23=(-1.OJ*Al2
A24=2. a/ELE
A'1zA13
A32=A23
A33All1
A3'.=A23
A41=A14
A42=A24
A43=A34
A44=A22

C CALCULATE THE ELEMENTAL B MATRIX

B1I%(-6.0)/(5.0*ELE)
B12=-1 .1

B14=-.1I
B21=B14
B22=(-2. O*ELE)/15.0
B23 . 1
B24=-ELE/30 .0
B31=B13
B32=B23
B33=B1 1
B34=1.1
B41 =B21
B2=B24
B43=. 1
B44=B 22

C
C CALCULATE THE ELEMENTAL C MATRIX

Cll=- .5
C12=ELE/1O .0
C1 3=.5

C21=C14
C22=0 .0
C23=C12
C)4=( ELE**2)/(-60 .0)
C31=C11
C32=C21
C 7 C 13

C34C12

C42=C-l.D)*C24

(,4ef C22
C
C CALCULATE THE ELEMENTAL D MATRIX
c

Dll=13 .0*ELE/35.0
Dl12=(l.0/2l0.O)*(ELEx*2.0)
D13 =9 (*ELE/70 .0
D14=(-13. 0/420 .0)* ELE**2)

D12=(ELE**E3.0)/(105. )
D23z(l3.0O*ELE**2),'420.
024=-( ELE*Ex3.0)/C 140 .0)
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D33=Dll
D34=C-1l .0*ELEx*2)/210.

D42=D24
D43=D34
D4zD22

C FILL THE GLOBAL A,B,C, AND D MATRICES

LIJEL 2*NEL-1

DO 10 I=I, LNEL, 2

ALPHAO .0

PSIAVE=ALPHA+C ELE/*2.0)

PSISQ=PSIAVE**2

AC 1,I+ )=AC1,I+1 )+A12
AC I, I+2)=A13
AI, I+3)=A14

A( 1+1,1 )=AC +1,1 )+A21
AC 1+1,1+1)=AC 1+1,1+1 )+A22
AC 1+2 ,I+2)=A23
AC 1+1, I+3)=A24

AC 1+2, I) =A31
AC 1+2,1+1) zA32
AC 1+2, I+2)=A33
AC 1+2, I+3)=A34

AC 1+3, I)=A41
ACI+3,I+1)=A42
AC 1+3, I+2)=A43
AC 1+3, I+3):A44

BC I, I) =BI, I)+C Bl1*PSISQ)
BC 1,I+1) =BC ,1+1 )+C B12*PSISQ)
BC I, I+2)=Bl3*PSISQ
BC I, +3) zB140PSISQ

BC 1+1,1 )=BC +1,1 )+C B21*PSISQ)
BCI+1,I+1)=B(I+1,I+1)+(B22*PSI'ZQ)
BC 1+1, I+2)=B23*PSISQ
BC 1+1, I+3)=B24APSISQ

BC 1+2,1 )=B31*PSISQ
BC 1+2,1+1 )=B32*PSISQ
BC 1+2, I+2)=B33'(PSISQ
BC 1+2, I+3)=B34*PSISQ

BC 1+3,1 )=B4l*PSISQ
BC 1+3,1+1 )=B42*PSISQ
BCI+3,I+2)=B43*PSISQ
BC 1+3, 1+3) =B44*EPS15Q

CCI, I) =CC1,1)+(C1 1PSIAVE)
CCI, 1+1 )=CC 1,1+2 )- Cl2*P$IAVE)
CCI, 1+2) =Cl3*PSIAVE
CCI, 1+3) =C14*PSIAVE

CC 1+1,1 )=CC 1+1,1 )+(CC-1*P'IAVE)
CCI+1,I+1)=CCI+1,I+1)+(CZ2*P'SIAVE)
CC 1+1,1+2)=C23KPSIAVE
CCI+1,I+3)=C24*PSIAVE

CC 1+2, I)=C31*PSIAVE
CC 1+2,1+1 )=C32*PSIAVE
CC 1+2, 1+2) zC33xPSIAVE
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C(I+2, I+3)=C34*PSIAVE

CC 1+3, I)=C4J9EPSIAVE
CC 1+3, I+1)=C42*PSIAVE
CC 1+3, I+2)=C43) PSIAVE
CC 1+3, I+3)=C44*PSIAVE

DCI, I)=D( I, I)+D11
DCI, 1+1) =D( 1,1+1 .+Dl2
DCI,1+2) =D13
D( I, +3)=Dl4

D( 1+1,1 )=DC1+1,1)+021
DC 1+1,1+1) =DC1+1,1+ ).+D22
DC 1+1,1+2)=D23
DC1+1, I+37)=D24

DC 1+2, )=D31
DC 1+2,1+1 )=D32
DCI+I,I+2)=D3'
DC 1+2, I+3)=D34i

DC 1+3,1 )=D41
DC 1+3,1+1 )=D42
DCI+3,I+2)=D43
DCI+3,I+3):D44

ALPHA=ALPHA+ELE

10 CONTINUE

RETURN

EN D

SUBROUTINE FORMCNEQ,TIME)
INCLUDE 'COMMON FORTRAN'

ZL =ZLINT - RATE*T1ME + ACCO(TIME**2)
ZLDOT -RATE + 2.*ACC*TIME
ZLDDOT 2.*ACC
Fl 3.141592654
PAR'~M =PI/1.5

C ZL = 9. + l.* COS( PAPAM*TIME)
C ZLDOT -(PARAM)*SIN(PARAM*TIME)
C ZLEDOT -(PARAM*42)*COS(PARAM*T:ME)

ACOEFFC(-1.0)/C CZL**4)*BETA)
EC'OEFF= -((ZLDOT/ZL)**2)
C COEFF= -'2.*(ZLDOT/ZL)**2) + ZLDDOT

CO 20 IzI,NDOF
C0 15 J=1,NDOF

R(I.J)= A(I,J)*ACOEFF + BI,J)*BCOEFF + CC1,J)*CCOEFF
CCCI, J) -2.*BETA*CZLDOT/ZL)XCI,J)

15 CONtJI NUE
20 CONTI NUE

C REDUCE SYSTEM OF EQUATIONS FROM SECOND TO FIRST O.D.E.

DO 100 I=1,NDOF
13 C1I, 1 )=1I. 0

100 CONTIN1UE

DO 300 1=1,NDOF
K=I+N DO F
DO 200 J=1,IJDOF

LL=J+iDOF
OC K, L L )DCI, J)

200 CONTINUE
300 C0ONT T'UE
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DO 400 I=1,NDOF
III +N DO F
H( 1,11)=Il.0

400 CONTINUE

DO 600 I=.L,NDOF
K=I+NDOF

DO 500 J=1,NDOF

500 CONTINUE J
600 CONTNT I

DO 700 I=1,NDOF
I II1+ NDO F

DO 650 J=1,DOF
JJ=J+NOF

H(II,JJ) =CC(I,J)
650 CONTINUE
700 COIJTIN4UE

C iMPOSE FIXED END BOUNDARY CONDITIONS

DO 800 J=1,2
DO 750 I=1,NEQ

G(J+NDOF,I)=0.0

H(J+NDOF,I)=0.0
750 CONTINUE
800 CONTINUE

G(NOOF+1 , NDOF+l )=1 . 0
G(NDOF+2,NDOF+2)=1 .0

RET UPN
END

SUBROUTINE FCN (NEQ,TIME,DELTA,YPRIME)

INCLUDE 'COMMON FORTRAN'
DIMjENSION YPRIME(NEQ),DELTA(NEQ)
REAL L

DET4) .

DELTA(') =0.0

DELTA(NlDOF+l) =0.0
DELTA(NDOF+2) =0.0

C FORM YPRIME

DO 1000 IEQ~l,NEQ
YPRIMEC IEQ )=O .0
00 900 IC~l,tIEQ

YPRIMEC IEQ)=YPRIME(IEQ)+HCIEQ,IC)*DELTA(IC)
900 CONTINUE

1000 CONTINUE

RETURN
END

FUNCTION FCNlJ(NEQ, TIME, DELTA, PD)
REAL -IME, DELTA(NEQ), PD(*)
FCNJJ=0.0
RETURN
END
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